Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Pharmacol ; 12: 616993, 2021.
Article in English | MEDLINE | ID: covidwho-1133950

ABSTRACT

The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease's main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus's genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus's structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.

2.
Health Sci Rep ; 3(4): e213, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-953415

ABSTRACT

The transmission control of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most effective strategy by the absence of its specified vaccine or drug. Although the aerosol mediated transmission of SARS-CoV-2 has been confirmed, the physicochemical treatment of the biotic and abiotic objects is still the most promising approach in its infection control. The front line of the most effective disinfecting compounds on SARS-CoV-2 implies to be sodium hypochlorite, ethanol, hydrogen peroxide, quaternary ammonium compounds, and phenolic compounds, respectively. However, widely used compounds of alkyldimethylbenzylammonium chloride (benzalkonium chloride) biguanides (chlorhexidine) have not shown the multitude load reduction in less than 10 minutes. The susceptibility of SARS-CoV-2 to physical treatment follows the pattern of heat, acidity, and UV radiation. Rather all of the mentioned physical or chemical treatments, target the envelope proteins of the coronavirus mainly by impairing its entry to host cells. The anti-SARS-CoV-2 activity of combinatorial physicochemical treatments or evaluation of new chemical entities or physical treatments such as microwave irradiation still needs to be explored. Therefore, the development of a reliable decontamination protocol for SARS-CoV-2 demands revealing its stability pattern study vs a spectrum of single and combinatorial physicochemical parameters.

SELECTION OF CITATIONS
SEARCH DETAIL